

EASY 20 R+ Bottle top dispenser with recirculation

Please read the User Manual carefully before use, and follow all operating and safety instructions!

user manual

english, español, français

User Manual

EASY 20 R+ Bottle top dispenser with recirculation

Preface

Users should read this Manual carefully, follow the instructions and procedures, and beware of all the cautions when using this instrument.

Service

If help is needed, you can always contact your dealer or Labbox via www.labbox.com (declare an incidence)

Please, provide the customer service representative with the following information:

- Serial number
- Description of the problem
- Your contact information

Warranty

This instrument is guaranteed to be free from defects in materials and workmanship under normal use and service, for a period of 24 months from the date of invoice. The warranty is extended only to the original purchaser. It shall not apply to any product or parts which have been damaged on account of improper installation, improper connections, misuse, accident or abnormal conditions of operation.

For claim under the warranty, please contact your supplier.

Safety Instructions

Please read the instruction manual carefully before using the dispenser. Although we have tried to cover maximum safety instructions, this manual cannot describe all possible safety hazards. It is responsibility of the user to establish their own safety, health practices and determining the applicability of regulatory limitation prior to the usage of dispenser.

Please follow below safety instructions carefully:

- Please understand all the details in manual before you start using instrument.
- Please use protective clothing, eye protection glasses and gloves while working with hazardous liquids.
- Please do not dispense inflammable media into plastic vessels which generates static charge.
- This device is not suitable for the below solutions.
- Concentrated (Hydrochloric Acid, Fluorinated Hydrocarbons, Saline Solutions, Nitric Acid), Highly Concentrated Alkaline Solution and Crystallizing Solution. The liquids attacking FEP, PFA, PTFE, Borosilicate Glass, Al O, Organic Solvents, Trifluoroacetic Acid, Explosive liquids, Fuming Acids, Tetrahydrofuran, Suspension (e.g. of charcoal) as solid particles.
- Please handle the dispenser carefully to avoid any accident during usage.
- The nozzle should always point away from the user while dispensing. Avoid splashes.
- Always use suitable vessels for dispensing liquids.
- Never push down the piston while nozzle cap is on.
- It is recommended to clean the discharge tube regularly.
- Please do not give excess pressure while aspirating or dispensing. The glass tube may break inside. Please follow trouble shooting guide if you find any difficulty in moving the piston up and down.

Intended Use

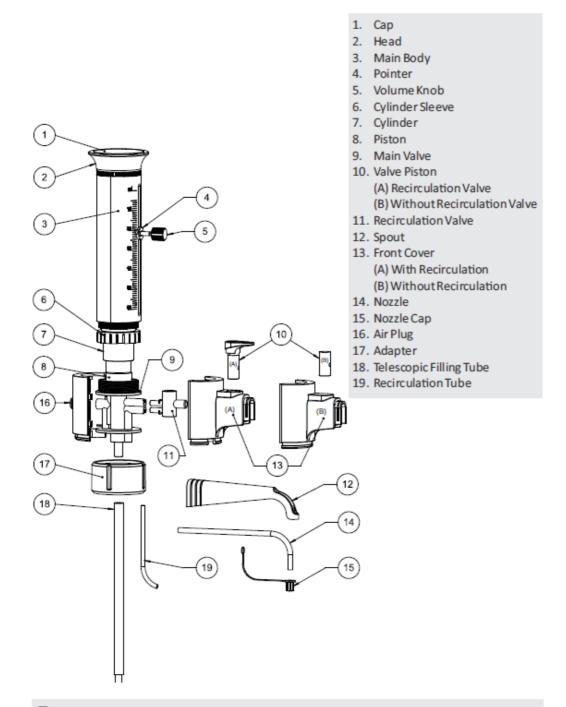
EASY liquid handling instrument and their accessories are designed and constructed for accurate and precise liquid handling, specially of samples from the human body within the scope of in-vitro diagnostic application, in order to allow the in-vitro diagnostic medical device to be used as intended.

Bottle top dispensers are generally used for dispensing of small volumes of liquid, repetitively and safely from a liquid bottle.

Our dispensers are made up of high-grade engineering plastics like PFA, FEP, PTFE etc. which ensures high performance and adaptability to use more liquids.

In addition to ensure high accuracy, true bore glass cylinder is used in the dispenser.

These dispensers can be easily cleaned. Its lower part is also autoclavable to avoid contamination.


Functions

This instrument is designed for dispensing liquids observing the following limits.

- \bullet +15°C to 40 °C (59 °F to 104 °F) instrument and reagent.
- Vapor pressure up to 500 mbar.
- Density up to $2.2 \,\mathrm{g/cm^3}$
- Kinematic viscosity up to 500 mm²/sec.

(dynamic viscosity [mPas]=Kinematic Viscosity [mm 2 /s]xdensity[g/cm 3])

Overview

Note: Recirculation tube should be used only in dispenser with recirculation valve mechanism.

Package inclusions

The bottle top dispenser package includes following:-

- Bottle top dispenser 1
- Telescopic filling tube 1
- 1* Recirculation tube
- Bottle adapters - 4 (Thread sizes: 28, 38, 40 & 45mm)
- Calibration tool - 1
- User manual
- Certificate of conformity / Calibration report
- Warranty card

Assembly

1. Mounting the telescopic filling tube/recirculation tube

Adjust length of the telescoping filling tube to the bottle height and attach it carefully in center. If dispenser with recirculation valve mechanism is used, the optional recirculation tube should also be installed. Insert it with opening pointing outward (Fig 1).

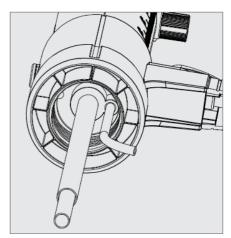


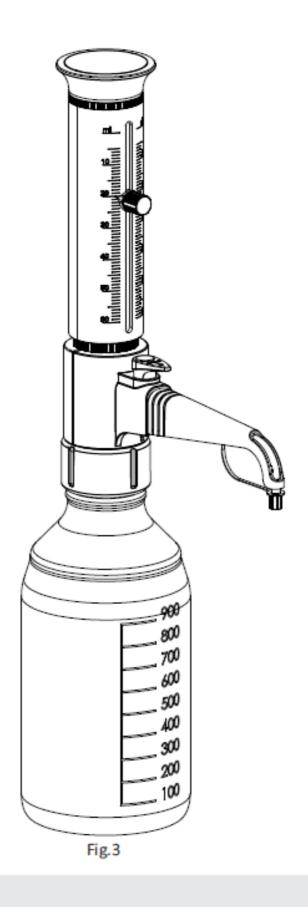
Fig.1

2. Mounting the dispenser on a bottle

Screw the dispenser (GL 32 threads) onto the reagent bottle and ensure to tighten it properly. It is preferable to align the nozzle with graduation mark on main body.

Note: For bottles with other thread sizes, select a suitable adapter.

Fig.2



Note: For bottles with other thread sizes, select a suitable adapter.

The adapters supplied with the dispenser are made of polypropylene (PP), and can only be used for media which do not attack PP.

This accessory is available only with recirculation valve product.

M WARNING

Always wear protective gloves when touching the dispenser or the bottle, especially when using dangerous liquids.

When mounted to a reagent bottle, always carry the dispenser as shown in Fig.3

Priming - Bottle top dispenser with recirculation mechanism

The nozzle should always point away from the user. Please ensure one should never press down the piston when the nozzle cap is mounted. Avoid splashing.

Please follow below steps for priming:

- 1. Adjust the knob to recirculation mode. (Fig.5)
- 2. Slowly pull up the piston and push it down rapidly till the end. Repeat this process until air bubbles disappear from the cylinder. (Fig.6)
 - 3. Readjust the knob to dispense.

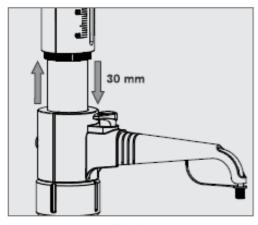


Fig.6

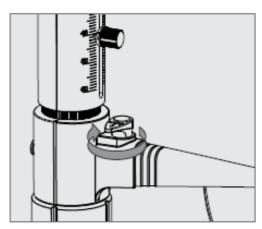


Fig.5

Operating Instructions

Volume setting

Please follow below steps for volume setting:

- 1) Turn the volume setting knob in an anti-clockwise direction.
- 2) Adjust the knob to desired volume by moving it up or down.
- 3) Match the pointer with the graduation mark and tighten the knob in clock wise direction.

Now your dispenser is ready to work at your desired set volume. (Fig.8)

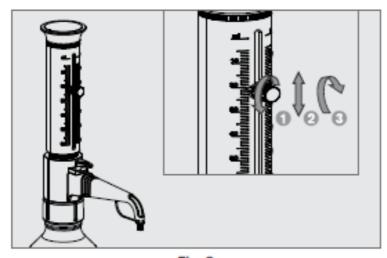


Fig.8

Dispensing

WARNING

Please follow all safety instructions before you start.

Please follow below steps for dispensing liquids:

- Please follow priming process before you start (as shown in Priming).
- Turn the knob to dispensing.
- Keep a vessel below the nozzle.
- Set your desired volume (as shown in Volume setting).
- Gently pull the piston until the upper stop and then push down the piston until lower stop.
- Touch the nozzle against the inner wall of the receiving vessel. Repeat this process as per number of dispensing cycles required.
- 7. Close the nozzle cap to the nozzle.

Note: Do not give excess force while pushing down the piston. If you feel the piston is jammed, please follow trouble shooting guide (12).

Before you fix the nozzle cap, please ensure that the piston is at lower stop.

One can observe slight sound during aspirating the liquid and on shaking the dispenser as a result of balldesign.

Cleaning

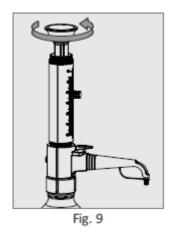
Please make sure to clean the dispenser regularly for its smooth functioning. In following conditions, cleaning must be done.

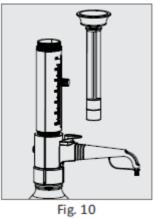
- When the piston is stuck inside the glass tube
- Before changing of reagents
- Before longer downtime
- Before autoclaving process
- Before any maintenance

Please make sure to wear suitable eye protection glasses and protective clothing.

Please follow below steps for cleaning:

- Completely dispense out the liquid present inside the dispenser.
- Mount the dispenser on a bottle filled with deionized water or any other suitable cleaning agent and rinse the dispenser several times.
- Pull off the telescopic tube and recirculation tube and clean it with the deionized water.
- In case of recirculation, change the knob position to recirculation mode. Again rinse the dispenser for several times.




Please follow below steps to clean the piston and glass barrel:

This procedure must be followed if the piston is difficult to move or if dispenser is to be autoclaved.

- Unscrew the head as shown in Fig. 9
- Take out the piston completely as shown in Fig. 10

Clean the piston & glass barrel and put them back in their original position and screw back the head

Error Limits

Error limits related to the nominal capacity (= maximum volume) indicated on the instrument, are obtained when instrument and distilled water are equilibrated at ambient temperature (20°C/68°F). The calibration process is performed as per the EN ISO 8655-6 standard with a completely assembled instrument and uniform dispensing.

Volume	Increment	Inaccuracy (±) %		Imprecision (±) %	
(ml)	(ml)	± %	± ml	± %	± ml
0.5 - 5	0.1	0.5	0.025	0.2	0.01
1 - 10	0.2	0.5	0.05	0.2	0.02
2.5 - 25	0.5	0.5	0.125	0.2	0.05
5 - 50	1.0	0.5	0.25	0.2	0.1

^{*} The specifications (inaccuracy and imprecision) are decided on the basis of EN ISO 8655-5 standard.

Calibration

During calibration process one has to take the reading at lowest volume first, ensure not to move the body before you close the cap and then proceed to the medium and high volume.

Calibration check

 Please follow complete calibration procedure given in EN ISO 8655-5 manual like environment conditions, water, weighing balance etc.

Volume adjustment

Please follow below steps to calibrate the bottle top dispenser if there is a variation in the desired volume and actual volume:-

- 1. Open the cap with calibration tool as shown in Fig. 11
- 2. Insert the hex tool on hex nut as shown in Fig. 12
- 3. Rotate the hex tool in clockwise direction to decrease the volume, rotate the hex tool in anti clockwise direction to increase the volume.
- 4. Take out the hex tool and close the cap.

Fig. 11

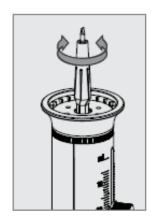


Fig. 12

Autoclaving

This dispenser is autoclavable in following conditions.

Temperature: $120^{\circ}\text{C} / 250^{\circ}$ Fahrenheit Pressure: 1.05 bar / 15 psi (pounds)

Time: 20 minutes or less

Exceeding the above conditions will damage the parts.

Please follow below steps to autoclave the dispenser:-

- 1. Clean the dispenser thoroughly as described in cleaning section before you start autoclaving.
- 2. Take out following parts:
 - a) Pull out the piston by unscrewing the head
 - b) Pull off the nozzle cap and telescopic filling tube
- 3. Autoclave all the parts as per above procedure.
- 4. Cool down the parts for atleast 8 hours in room temperature and then reassemble the parts.
- 5. Now the dispenser is ready to be used.

Troubleshooting

Troubleshooting				
Issue	Possible root cause	Corrective action		
Piston jam	Formation of crystals or	Immediately stop dispensing. Do not give extra force to		
	dirt accumulation	dispense the liquid. Follow		
Liquid filling / dispensing issue	Valve piston contaminated or dirt accumulation	Follow cleaning procedure (8.cleaning)		
	Liquid with high vapor pressure has been drawn in too quickly	Try to draw the liquid slowly		
Air bubble in the dispenser	Priming issue	Prime the instrument		
	Fitting of telescopic filling tube is loose	Connect the tube firmly		
	Recirculation tube fitting is loose	Connect the recirculation tube firmly		
Leakage	Recirculation tube is not connected	Connect the recirculation tube		

Recommended Reagents: EASY 20 R+

Below is a list of suitable reagents to work with the bottle top dispenser:

Acetaldehyde		
Acetic acid (glacial), 100%		
Acetic acid, ≤96%		
Acetic anhydride		
Acetone		
Acetonitrile		
Acetophenone		
Acetyl chloride		
Acetylacetone		
Acrylic acid		
Acrylonitrile		
Adipic acid		
Allyl alcohol		
Aluminium chloride		
Amino acids		
Ammonia, ≤ 20%		
Ammonia, 20-30%		
Ammonium chloride		
Ammonium fluoride		
Ammonium sulfate		
n-Amyl acetate		
Amyl alcohol (Pentanol)		
Amyl chloride (Chloropentane)		
Aniline		
Barium chloride		
Benzaldehyde		
Benzene (Benzol)		
Benzine (Petroleum benzine)		
bp 70-180 °C		
Benzoyl chloride		
Benzyl alcohol		
Benzylamine		
Benzylchloride		
Boric acid, ≤10%		
Bromobenzene		
Bromonaphthalene		
Butanediol		
1-Butanol		
n-Butyl acetate		

Butul methyl ether				
Butyl methyl ether				
Butylamine				
Butyric acid				
Calcium carbonate				
Calcium chloride				
Calcium hydroxide				
Calcium hypochlorite				
Carbon tetrachloride				
Chloro naphthalene				
Chloroacetaldehyde, ≤45%				
Chloroacetic acid				
Chloroacetone				
Chlorobenzene				
Chlorobutane				
Chloroform				
Chlorosulfonic acid				
Chromic acid, ≤50%				
Chromosulfuric acid				
Copper sulfate				
Cresol				
Cumene (Isopropyl benzene)				
Cyclohexane				
Cyclohexanone				
Cyclopentane				
Decane				
1-Decanol				
Dibenzyl ether				
Dichloroacetic acid				
Dichlorobenzene				
Dichloroethane				
Dichloroethylene				
Dichloromethane				
Diesel oil (Heating oil),				
bp 250-350 °C				
Diethanolamine				
Diethyl ether				
Diethylamine				
1.2 Diethylbenzene				
Diethylene glycol				

Dimethyl sulfoxide (DMSO)
Dimethylaniline
Dimethylformamide (DMF)
1.4 Dioxane
Diphenyl ether
Essential oil
Ethanol
Ethanolamine
Ethyl acetate
Ethylbenzene
Ethylene chloride
Fluoroacetic acid
Formaldehyde, ≤40%
Formamide
Formic acid, ≤100%
Glycerol
Glycol (Ethylene glycol)
Glycolic acid, ≤50%
Heating oil (Diesel oil),
bp 250-350 °C
Heptane
Hexane
Hexanoic acid
Hexanol
Hydriodic acid, ≤57%
Hydrobromic acid
Hydrochloric acid, ≤20%
Hydrochloric acid, 20-37%
Hydrogen peroxide,≤35%
Isoamyl alcohol
Isobutanol
Isooctane
Isopropanol (2-Propanol)
Isopropyl ether
Lactic acid
Methanol
Methoxybenzene
Methyl benzoate
Methyl butyl ether
Mathed athed leatons

Methyl ethyl ketone

Methyl formate		
Methyl propyl ketone		
Methylene chloride		
Mineral oil (Engine oil)		
Monochloroacetic acid		
Nitric acid, ≤30%		
Nitrobenzene		
Oleic acid		
Oxalic acid		
n-Pentane		
Peracetic acid		
Perchloric acid		
Perchloroethylene		
Petroleum, bp 180-220 °C		
Petroleum ether, bp 40-70 °C		
Phenol		
Phenylethanol		
Phenylhydrazine		
Phosphoric acid, ≤85%		
Phosphoric acid, 85%		
Sulfuric acid, 98% 1:1		
Piperidine		
Potassium chloride		
Potassium dichromate		
Potassium hydroxide		
Potassium permanganate		
Propionic acid		
Propylene glycol (Propanediol)		
Pyridine		
Pyruvic acid		
Salicylaldehyde		
Scintilation fluid		
Silver acetate		
Silver nitrate		
Sodium acetate		
Sodium chloride		
Sodium dichromate		
Sodium fluoride		
Sodium hydroxide, ≤30%		
Sodium hypochlorite		
Journal Hypochion C		

Sulfuric acid, ≤98%	
Tartaric acid	
Tetrachloroethylene	
Tetramethylammonium hydroxide	
Toluene	
Trichloroacetic acid	
Trichlorobenzene	
Trichloroethane	
Trichloroethylene	
Trichlorotrifluoro ethane	
Triethanolamine	
Triethylene glycol	
Trifluoro ethane	
Trifluoroacetic acid (TFA)	
Turpentine	
Urea	
Xylene	
Zinc chloride, ≤10%	
Zinc sulfate, ≤10%	

A CAUTION:-

Always follow instructions in the operating manual of the dispenser as well as the reagent manufacturer's specifications. In addition to these chemicals, a variety of organic and inorganic saline solutions (e.g., biological buffers), biological detergents and media for cell culture can be dispensed. If used with strong acids, it is advised to rinse & remove dispenser at the end of every working day & store it safely. If require information on chemicals not listed, please contact us.

Nota importante para los aparatos electrónicos vendidos en España Important note for electronic devices sold in Spain Remarque importante pour les appareils électroniques vendus en Espagne

Instrucciones sobre la protección del medio ambiente y la eliminación de aparatos electrónicos:

Los aparatos eléctricos y electrónicos marcados con este símbolo no pueden desecharse en vertederos.

De conformidad con la Directiva 2002/96/ CE, los usuarios de la Unión Europea de aparatos eléctricos y electrónicos, tienen la oportunidad de retornar el instrumento para su eliminación al distribuidor o fabricante del equipo después de la compra de uno nuevo. La eliminación ilegal de aparatos eléctricos y electrónicos es castigada con multa administrativa.

Nota importante para los aparatos electrónicos vendidos en Francia Important note for electronic devices sold in France Remarque importante pour les appareils électroniques vendus en France

Informations sur la protection du milieu environnemental et élimination des déchets électroniques :

Les appareils électriques et électroniques portant ce symbole ne peuvent pas être jetés dans les décharges.

En réponse à la règlementation, Labbox remplit ses obligations relatives à la fin de vie des équipements électriques de laboratoire qu'il met sur le marché en finançant la filière de recyclage de Récylum dédiée aux DEEE Pro qui les reprend gratuitement (plus d'informations sur www.recylum.com).

L'élimination illégale d'appareils électriques et électroniques est punie d'amende administrative.

